MAS241 CH5: Functions of Bounded Variation

MaxLevSnail

September 18, 2022

1 Partitions

Definition 1.1. $\pi = \{x_0, x_1, ..., x_p\}$ is called a partition of [a, b] if $a = x_0 < x_1 < ... < x_p = b$.

 $\Delta x_j = x_j - x_{j-1}$

 $\Pi[a, b]$: Collection of all partitions.

Definition 1.2. Let $\pi_1, \pi_2 \in \Pi[a, b]$ We call π_1 is finer than π_2 if $\pi_2 \subset \pi_1$ and denote $\pi_2 \leq pi_1$. (π_2 is coarser than π_1).

Definition 1.3. $\pi_1 \lor \pi_2$: Least common refinement of π_1 and π_2 .

Lemma 1.1. $\varepsilon \leq \varepsilon$ is a partial order in $\Pi[a, b]$

1. $\pi \leq \pi \ \forall \pi \in \Pi[a, b]$ 2. $\pi_1 \leq \pi_2, \pi_2 \leq \pi_1 \Longrightarrow \pi_1 = \pi_2$ 3. $\pi_1 \leq \pi_2, \pi_2 \leq \pi_3 \Longrightarrow \pi_1 = \pi_3$

Theorem 1.2. $\pi_1 \leq \pi_2 \implies \pi_1 \vee \pi_2 = \pi_2$

Definition 1.4. Gauge of partition π : $||\pi|| = max \{\Delta x_j : j = 1..p\}$. And it is not a norm.

2 Monotone Functions

Definition 2.1. Definition about increasing/decreasing function, and it was trivial.

Theorem 2.1. $f : [a, b] \rightarrow \mathbb{R}$ and f is increasing. $\pi = \{x_0, ..., x_p\} \in \Pi[a, b] \Rightarrow \sum_{j=0}^p (f(x_j^+) - f(x_j^-)) \le f(b) - f(a)$

Theorem 2.2. $f : [a, b] \rightarrow \mathbb{R}$ and f is monotone. $\Rightarrow f$ is discontinuous at most countable times.

Proof. $A_k = \{x \in [a, b] : f(x^+) - f(x^-) > 1/k\}$ Claim: A_k is finite for all k > 0. Suppose A_k has infinitely many points. Then theorem 1 fails. Hence A_k are all finite. $\bigcup_{k=1}^{\infty} A_k \supset \{x \in [a, b]/f \text{ is discontinuous at } x\}.$

Saltus functions We can describe any function to the sum of a discrete function and a continuous function.

 $u(x) = f(x) - f(x^{-})$ when $x \neq a$, $v(x) = f(x^{+}) - f(x)$ when $x \neq b$, then we can define a set S: collection of all discontinuous points of f.

Saltus function:

$$S_f(x) = f(a) + \sum_{x_j \in S \cap \{a,x\}} u(x_j) + \sum_{x_j \in S \cap \{a,x\}} v(x_j)$$

3 Function of Bounded Variation

Definition 3.1. Variation $V(f; \pi) = \sum |\Delta f_j|$ $f \in BV(a, b)$ is of bounded variation if $\exists M > 0$ such that $V(f; \pi) \le M$ for all $\pi \in \Pi[a, b]$ $V(f; a, b) : \sup_{\pi \in \Pi[a,b]} V(f; \pi)$

Theorem 3.1. $f \in BV(a, b) \Rightarrow f$ is bounded.

Theorem 3.2. If f is monotone, then $f \in BV(a, b)$

Proof.
$$V(f;\pi) = \sum_{j=1}^{p} |f(x_j) - f(x_{j-1})| = \sum_{j=1}^{p} (f(x_j) - f(x_{j-1})) = f(x_p) - f(x_0) = f(b) - f(a)$$

Theorem 3.3. $f : [a, b] \to \mathbb{R}$, continuous on [a, b], differentiable on (a, b) $||f'||_{\infty} < \infty \Longrightarrow f \in BV(a, b)$

Proof. $V(f; \pi) = \sum_{j=1}^{p} |f(x_j) - f(x_{j-1})| = \sum_{j=1}^{p} |f'(c_j)(x_j - x_{j-1})| \le \sum_{j=1}^{p} ||f'||_{\infty} (x_j - x_{j-1}) = ||f'||_{\infty}$

Theorem 3.4. $f, g \in BV(a, b) \Longrightarrow f + g, f - g \in BV(a, b)$

Theorem 3.5. $f, g \in BV(a, b) \Longrightarrow fg \in BV(a, b)$

Theorem 3.6. $f \in BV(a, b) \Longrightarrow 1/f \in BV(a, b)$

4 Total Variation as a Function

Theorem 4.1. If $f \in BV(a, b)c \in (a, b)$, then $f \in BV(a, c)$, $f \in BV(c, b)$. V(f; a, b) = V(f; a, c) + V(f; c, b)

Proof. Let $\pi = \{x_0, ..., x_p\} \in \Pi[a, c]$. Then $\overline{\pi} = \{x_0, ..., x_p, b\} \in \Pi[a, b]$ $V(f, \pi) \leq V(f, \overline{\pi}) < M$. Hence $f \in BV(a, c), f \in BV(c, b)$

Definition 4.1. $f \in BV(a, b)$. The variation of f is a function, $V_f : [a, b] \to \mathbb{R}$ given by $V_f(x) = V(f; a, x) (= \sup_{\pi \in \Pi(a, x)} V(f, \pi))$

Theorem 4.2. $f \in BV(a, b) \Rightarrow V_f$ is an increasing function.

Proof. Let
$$x, y \in (a, b)$$
 and $x < y$. $V_f(y) - V_f(x) = V(f; a, y) - V(f; a, x) = V(f; x, y) \ge 0$

Theorem 4.3. $f \in BV(a, b) \Rightarrow V_f - f$ is an increasing function.

Proof. $V_f(y) - f(y) - V_f(x) + f(x) = V(f; x, y) - (f(y) - f(x))$ Let $\pi = \{x, y\} \in \Pi(x, y)$. Since V(f; x, y) is a supremum of $V(f, \pi)$, $V(f; x, y) - V(f, \pi) \ge 0$ □ **Theorem 4.4.** $f \in BV(a, b) \iff \exists g, h : [a, b] \rightarrow \mathbb{R}$ increasing such that f = g - h $\Rightarrow g = V_f, h = V_f - f$ *Proof.* $(\Leftarrow)V(f, \pi) = V(g - h, \pi) \le V(g, \pi) + V(h, \pi)$

5 Continuous Functions of Bounded Variation

Theorem 5.1. $f \in BV(a, b) \Rightarrow \exists f(x^+) \forall x \in [a, b), \exists f(x^-) \forall x \in (a, b]$

Proof. $\exists g, h$ such that f = g - h, g, h both increasing and have limit.

Theorem 5.2. $f \in BV(a, b), c \in [a, b]$ f is continuous at $c \Leftrightarrow V_f$ is also continuous at c.

Proof. (\Leftarrow) Let $\varepsilon > 0.\exists \delta > 0$ such that $|V_f(x) - V_f(c)| < \varepsilon$ whenever $|x - c| < \delta$. Then $|f(x) - f(c)| \le |V_f(x) - V_f(c)| < \varepsilon$ whenever $|x - c| < \delta$.

 $(\Longrightarrow) \text{ Let } \varepsilon > 0.\exists \delta > 0 \text{ such that } |f(x) - f(c)| < \varepsilon \text{ whenever } |x - c| < \delta. \\ \exists \pi \in \Pi(c, b) \text{ such that } V(f; c, b) - \varepsilon < V(f; \pi) \le V(f; c, b) = V(f; c, x_1) + V(f; x_1, b) \\ \text{We may assume } ||\pi|| < \delta. \text{ Then } V(f; c, b) - \varepsilon < |f(x_1) - f(c)| + \sum_{2}^{p} |f(x_j) - f(x_{j-1})| \le \varepsilon + V(f; x_1, b) \\ V(f; c, b) - V(f; x_1, b) \le 2\varepsilon \\ V(f; c, x_1) \le 2\varepsilon \\ V_f(x_1) - V_f(c) \le 2\varepsilon \text{ whenever } |x_1 - c| < \delta. \\ \text{Similarly to LHS.}$

Theorem 5.3 (Corollary 3). $f \in ([a, b] \cap BV(a, b)) \iff V_f$ and $V_f - f$ monotone and increasing continuous.