
MAS241 CH4: Di�erentiation

MaxLevSnail

September 18, 2022

1 The Derivative
De�nition 1.1. f ∶ I ⊂ ℝ → ℝ, c ∈ I . The derivative of f at c is the number m =

limk→0

f (c+ℎ)−f (c)

ℎ
if it exists.

If it exists, we call f is di�erentiable at c and m is the derivative, f ′(c)

De�nition 1.2.

Theorem 1.1. The line with slope m is tangent of f if and only if f is di�erentiable and m is
the derivative.

De�nition 1.3. If f is di�erentiable at c, the mapping t → mt = f
′
(c)t is called di�erential of

f at c and denote it by df

Theorem 1.2. Suppose f is di�erentiable at c, then
1. t → f

′
(c)t is linear

2. ∀" > 0
∃
N(0) such that |f (c + ℎ) − f (c) − mt| < "|t | forall t ∈ N (0)

Theorem 1.3. f is di�erentiable at c then f is continuous at c

Theorem 1.4. Algebra of derivatives

2 Chain Rule
Theorem 2.1. (f ◦g)

′
(c) = f

′
(g(c))g

′
(c)
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3 The Mean Value Theorem
Theorem 3.1. Suppose that f has local maximum/minimum at c ∈ (a, b) then f ′(c) = 0

Proof. The derivative of left side of c should be less than 0, right side of c should be larger than
0, so f ′(c) = 0

De�nition 3.1. If f ′(c) = 0, c is called a critical point.

Theorem 3.2 (Roll’s Theorem). f (a) = f (b) ⇒ ∃
c ∈ (a, b) such that f ′(c) = 0

Proof. Prove using f is bdd above and below. �nd local max/min and compare to the edges.

Theorem 3.3 (Mean Value Theorem). f ∶ [a, b] → ℝ, continuous and di�erentiable, ⇒∃
c ∈

(a, b) such that f ′(c) = f (b)−f (a)

b−a

Proof. Prove using Roll’s theorem.

Theorem 3.4 (Corollary 4). f ∶ [a, b] → ℝ, continuous and di�erentiable.
f
′
(x) = 0 on [a, b]. Then, f is constant.

Proof. Pick arbitrary x,y and use MVT.

Theorem 3.5 (Corollary 5). f ∶ [a, b] → ℝ, continuous and di�erentiable.
If f ′(x) = g′(x), then f (x) = g(x) + C

Proof. Prove using corollary 4.

Theorem 3.6 (Corollary 6). f ∶ [a, b] → ℝ, continuous and di�erentiable
f
′
(x) > 0: f is strictly increases.

f
′
(x) < 0: f is strictly decreases.

Proof. Pick arbitrary x,y and calculate slope.

Theorem 3.7 (Cauchy’s Generalized MVT). f , g ∶ [a, b] → ℝ, continuous and di�erentiable.
Then ∃

c ∈ (a, b) such that f ′(c)[g(b) − g(a)] = g′(c)[f (b) − f (a)]
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4 L’Hopital’s Rule
Theorem 4.1. f , g[a, b] → ℝ is continuous and di�’ble, for c ∈ (a, b), f (c) = g(c) = 0 and
g
′
(x) ≠ 0 on a neighborhood N ′

(c, �), Then limx→c

f (x)

g(x)
= limx→c

f
′
(x)

g
′
(x)

if the right has a limit.

Proof. Consider the right side limit.
By Cauchy’s MVT, we have f ′(d)(g(x) − g(c)) = g′(d)(f (x) − f (c)) for c < d < x .
f
′
(d)

g
′
(d)

=
f (x)

g(x)

limx→c+

f (x)

g(x)
=

f
′
(d)

g
′
(d)

= limx→c

f
′
(x)

g
′
(x)

Because d is function of x and f ′, g′ is continuous.

Theorem 4.2. f , g(a, ∞) → ℝ is cont. and di�’ble, limx→∞ f (x) = limx→∞ g(x) = ∞, g
′
(x) ≠ 0

⇒ limx→∞

f (x)

g(x)
= limx→∞

f
′
(x)

g
′
(x)

if the right has a limit.

Proof. Let limx→∞

f
′
(x)

g
′
(x)

= L, Let " > 0 be given.

Then ∃� such that | f
′
(x)

g
′
(x)

− L| < " whenever x > M1.

Since f (x) → ∞, g(x) → ∞, ∃M2 such that f (x) > f (M1), g(x) > g(M1) for all x > M2.
Let x > M2. Then ∃cx ∈ (M1, x) such that f ′(cx )(g(x) − g(M1)) = g

′
(cx )(f (x) − f (M1))

f
′
(cx )

g
′
(cx )

=

f (x) − f (M1)

g(x) − g(M1)

=

f (x)(1 − f (M1)/f (x))

g(x)(1 − g(M1)/g(x))

=

f (x)

g(x)

ℎ(x)

ℎ(x) → 1 as x → ∞, Hence |ℎ(x) − 1| < " if x is large.
⇒ |f (x)/g(x) − L| = |f

′
(x)/g

′
(x)ℎ − L| = |f

′
(x)/g

′
(x)ℎ − Lℎ + Lℎ − L|

= |f
′
(x)/g

′
(x) − L||ℎ| + L|ℎ − 1| ≤ "(1 + " + L)
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5 Taylor’s Theorem
Theorem 5.1. f , g[a, b] → ℝ is continuous and di�’ble up to order k+1.
Let x, x0 ∈ [a, b] with x ≠ x0, pk , qk are Taylor’s polynomial of f and g, respectively.
Then ∃c ∈ (x, x0) such that f (k+1)(c)[g(x) − qk(x)] = g(k+1)(c)[f (x) − pk(x)]

Proof. Let a ≤ x0 < x ≤ b. Let t ∈ [x0, x].
De�ne F (t) = f (t) + ∑ f

(j)
(t)/j!(x − t)

j (Taylor’s polynomial centered at T) and G(t) similarly.
Using Cauchy’s MVT, F ′

(c)(G(x) − G(x0)) = G
′
(c)(F (x) − F (x0)).

F (x0) = pk(x), G(x0) = qk(x), F (x) = f (x), G(x) = g(x). F ′
(t) = f

(k+1)
(t)/k!(x − t)

k .
And we can get the proposition.

Theorem 5.2. f , g[a, b] → ℝ is continuous and di�’ble up to order k+1.
Let x, x0 ∈ [a, b] with x ≠ x0. Then ∃c ∈ (x0, x) such that f (x) = ∑ f

(j)
(x)/j!(x − x0)

j
+ R(x0; x),

R = f
(k+1)

(c)/(k + 1)!(x − x0)
k+1.

Proof. Take g(x) = (x − x0)
k+1 and apply thm1.

Theorem 5.3. f ∶ [a, b] → ℝ is di�’ble for all orders.
Suppose ∃M > 0 such that ||f (k)||∞ ≤ M

k for all k. Then ∑f
(j)
(x)/j!(x − x0)

j
→ f uniformly on

[a, b].

Proof. ||f − pk ||∞ goes to 0 as k → ∞
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