MAS241 CH4: Differentiation

MaxLevSnail

September 18, 2022

1 The Derivative

Definition 1.1. $f : I \subset \mathbb{R} \to \mathbb{R}, c \in I$. The derivative of f at c is the number $m = \lim_{k\to 0} \frac{f(c+h)-f(c)}{h}$ if it exists.

If it exists, we call f is differentiable at c and m is the derivative, f'(c)

Definition 1.2.

Theorem 1.1. The line with slope m is tangent of f if and only if f is differentiable and m is the derivative.

Definition 1.3. If *f* is differentiable at *c*, the mapping $t \rightarrow mt = f'(c)t$ is called differential of *f* at *c* and denote it by *df*

Theorem 1.2. Suppose f is differentiable at c, then 1. $t \rightarrow f'(c)t$ is linear 2. $\forall \varepsilon > 0 \ \exists N(0)$ such that $|f(c + h) - f(c) - mt| < \varepsilon |t|$ for all $t \in N(0)$

Theorem 1.3. *f* is differentiable at *c* then *f* is continuous at *c*

Theorem 1.4. Algebra of derivatives

2 Chain Rule

Theorem 2.1. $(f \circ g)'(c) = f'(g(c))g'(c)$

3 The Mean Value Theorem

Theorem 3.1. Suppose that f has local maximum/minimum at $c \in (a, b)$ then f'(c) = 0

Proof. The derivative of left side of *c* should be less than 0, right side of *c* should be larger than 0, so f'(c) = 0

Definition 3.1. If f'(c) = 0, *c* is called a critical point.

Theorem 3.2 (Roll's Theorem). $f(a) = f(b) \implies {}^{\exists}c \in (a, b)$ such that f'(c) = 0

Proof. Prove using f is bdd above and below. find local max/min and compare to the edges. \Box

Theorem 3.3 (Mean Value Theorem). $f : [a, b] \to \mathbb{R}$, continuous and differentiable, $\Rightarrow^{\exists} c \in (a, b)$ such that $f'(c) = \frac{f(b)-f(a)}{b-a}$

Proof. Prove using Roll's theorem.

Theorem 3.4 (Corollary 4). $f : [a, b] \rightarrow \mathbb{R}$, continuous and differentiable. f'(x) = 0 on [a, b]. Then, f is constant.

Proof. Pick arbitrary x,y and use MVT.

Theorem 3.5 (Corollary 5). $f : [a, b] \rightarrow \mathbb{R}$, continuous and differentiable. If f'(x) = g'(x), then f(x) = g(x) + C

Proof. Prove using corollary 4.

Theorem 3.6 (Corollary 6). $f : [a, b] \rightarrow \mathbb{R}$, continuous and differentiable f'(x) > 0: f is strictly increases. f'(x) < 0: f is strictly decreases.

Proof. Pick arbitrary x,y and calculate slope.

Theorem 3.7 (Cauchy's Generalized MVT). $f, g : [a, b] \rightarrow \mathbb{R}$, continuous and differentiable. Then ${}^{\exists}c \in (a, b)$ such that f'(c)[g(b) - g(a)] = g'(c)[f(b) - f(a)]

4 L'Hopital's Rule

Theorem 4.1. $f, g[a, b] \to \mathbb{R}$ is continuous and diff ble, for $c \in (a, b)$, f(c) = g(c) = 0 and $g'(x) \neq 0$ on a neighborhood $N'(c, \delta)$, Then $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f'(x)}{g'(x)}$ if the right has a limit.

Proof. Consider the right side limit. By Cauchy's MVT, we have f'(d)(g(x) - g(c)) = g'(d)(f(x) - f(c)) for c < d < x. $\frac{f'(d)}{g'(d)} = \frac{f(x)}{g(x)}$ $\lim_{x \to c^+} \frac{f(x)}{g(x)} = \frac{f'(d)}{g'(d)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$ Because *d* is function of *x* and *f'*, *g'* is continuous.

Theorem 4.2. $f, g(a, \infty) \to \mathbb{R}$ is cont. and diff'ble, $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty, g'(x) \neq 0$ $\Rightarrow \lim_{x\to\infty} \frac{f(x)}{g(x)} = \lim_{x\to\infty} \frac{f'(x)}{g'(x)}$ if the right has a limit.

Proof. Let $\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = L$, Let $\varepsilon > 0$ be given. Then $\exists \mu$ such that $\left| \frac{f'(x)}{g'(x)} - L \right| < \varepsilon$ whenever $x > M_1$.

Since $f(x) \to \infty$, $g(x) \to \infty$, $\exists M_2$ such that $f(x) > f(M_1)$, $g(x) > g(M_1)$ for all $x > M_2$. Let $x > M_2$. Then $\exists c_x \in (M_1, x)$ such that $f'(c_x)(g(x) - g(M_1)) = g'(c_x)(f(x) - f(M_1))$

$$\frac{f'(c_x)}{g'(c_x)} = \frac{f(x) - f(M_1)}{g(x) - g(M_1)} = \frac{f(x)(1 - f(M_1)/f(x))}{g(x)(1 - g(M_1)/g(x))} = \frac{f(x)}{g(x)}h(x)$$

 $\begin{aligned} h(x) &\to 1 \text{ as } x \to \infty, \text{Hence } |h(x) - 1| < \varepsilon \text{ if } x \text{ is large.} \\ &\Rightarrow |f(x)/g(x) - L| = |f'(x)/g'(x)h - L| = |f'(x)/g'(x)h - Lh + Lh - L| \\ &= |f'(x)/g'(x) - L||h| + L|h - 1| \le \varepsilon (1 + \varepsilon + L) \end{aligned}$

r	-	-	-	_	
н					
н					
к					

5 Taylor's Theorem

Theorem 5.1. $f, g[a, b] \rightarrow \mathbb{R}$ is continuous and diff ble up to order k+1. Let $x, x_0 \in [a, b]$ with $x \neq x_0, p_k, q_k$ are Taylor's polynomial of f and g, respectively. Then $\exists c \in (x, x_0)$ such that $f^{(k+1)}(c)[g(x) - q_k(x)] = g^{(k+1)}(c)[f(x) - p_k(x)]$

Proof. Let $a \le x_0 < x \le b$. Let $t \in [x_0, x]$. Define $F(t) = f(t) + \sum f^{(j)}(t)/j!(x - t)^j$ (Taylor's polynomial centered at T) and G(t) similarly. Using Cauchy's MVT, $F'(c)(G(x) - G(x_0)) = G'(c)(F(x) - F(x_0))$. $F(x_0) = p_k(x), G(x_0) = q_k(x), F(x) = f(x), G(x) = g(x)$. $F'(t) = f^{(k+1)}(t)/k!(x - t)^k$. And we can get the proposition. □

Theorem 5.2. $f, g[a, b] \rightarrow \mathbb{R}$ is continuous and diff ble up to order k+1. Let $x, x_0 \in [a, b]$ with $x \neq x_0$. Then $\exists c \in (x_0, x)$ such that $f(x) = \sum f^{(j)}(x)/j!(x - x_0)^j + R(x_0; x)$, $R = f^{(k+1)}(c)/(k+1)!(x - x_0)^{k+1}$.

Proof. Take $g(x) = (x - x_0)^{k+1}$ and apply thm1.

Theorem 5.3. $f : [a, b] \to \mathbb{R}$ is diff ble for all orders. Suppose $\exists M > 0$ such that $||f^{(k)}||_{\infty} \leq M^k$ for all k. Then $\sum f^{(j)}(x)/j!(x - x_0)^j \to f$ uniformly on [a, b].

Proof. $||f - p_k||_{\infty}$ goes to 0 as $k \to \infty$