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1 Limit and Continuity
De�nition 1.1. f ∶ S ⊂ ℝ → ℝ, c ∈ S

limx→c f (x) = L⇔∀ " > 0,∃ � > 0 such that |f (x) − L| < " whenever 0 < |x − c| < � and x ∈ S.

De�nition 1.2. f ∶ S ⊂ ℝm → ℝn, c ∈ S

limx→c f (x) = L⇔∀ " > 0,∃ � > 0 such that f (S ∩ N ′(c, �)) ⊂ (L − ", L + ") for n = 1.

De�nition 1.3. f ∶ S ⊂ ℝm → ℝn, c ∈ S

f is called continuous at c if limx→c f (x) = L = f (c).

Theorem 1.1. f ∶ S ⊂ ℝn → ℝ, c ∈ S

limx→c f (x) = L⇒ f is locally bounded at x = c.
Locally bounded means ∀nbd N (c) f is bounded.

Proof. Let " = 1 then ∃� > 0 such that |f (x) − L| < " whenever 0 < |x − c| < �

⇒ |f (x)| < |L| + 1 whenever x ∈ N ′(c, �)
|f (x)| < |L| + 1 + |f (c)| whenever x ∈ N (c, �)

Theorem 1.2. f ∶ S ⊂ ℝn → ℝ, c ∈ S

limx→c f (x) = L > 0 ⇒ f is locally bounded away from 0.

Proof. Since f (x) → L > 0 as x → c, there exists � > 0 such that |f (x) − L| < L/2 whenever
x ∈ N ′(c, �).

Therefore, f (x) > L/2

Theorem 1.3. Suppose that f1 and f2 are two real valued functions with common domain S in
ℝn, that c is a point of S, and that limx→c f1(x) = L1 and limx→c f2(x) = L2 exists. Then
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Theorem 1.4 (Squeeze play theorem). f (x) ≤ g(x) ≤ ℎ(x), limx→c f (x) = limx→c ℎ(x) = L,

Then limx→c g(x) = L

Theorem 1.5. f (x) ≤ g(x) in N ′(c, �) ∩ S

limx→c f (x) = L1, limx→c g(x) = L2 ⇒ L1 ≤ L2

Characterizations of Discontinuities in ℝ

2 Topological description of continuity
Theorem 2.1. f ∶ S ⊂ ℝn → ℝm, T = f (S) We start with m = 1 case.
f is continuous if and only if f −1(U ) is relatively open in S for all U relatively open in T

Proof. (⇒)
Let x0 ∈ f −1(U ). Then f (x0) ∈ U .
Then ∃N (f (x0), ") ⊂ U . Since f is continuous, ∃N (x0, �) ∩ S such that f (N (x, �) ∩ S) ⊂ N (f (x0), ")
N (x, �) ∩ S ⊂ f −1(U ) Therefore, all points in S are interior point, f −1(U ) is open in S.

(⇐) Let " > 0 be given, Let x0 ∈ S.
f −1(N (f (x), ")) is open in S. Hence ∃N (x0, �) ⊂ f −1(N (f (x0), "))
Hence f is continuous at x0 ∈ S.

Theorem 2.2. If S is a connected subset of ℝn and if f is continuous on S,
then T = f (S) is also connected.

Proof. Suppose f (S) is disconnected. Then ∃V , U open sets such that V ∩ U = ∅, f (S) ⊂ U ∪ V .
Then f −1(V ), f −1(U ) are open. f −1(V ) ∩ f −1(U ) = ∅
S ⊂ f −1(U ) ∪ f −1(V ), S ∩ f −1(V ) ≠ ∅, S ∩ f −1(U ) ≠ ∅.

Theorem 2.3. If S is a compact subset of ℝn and if f is continuous on S,
then T = f (S) is also compact.
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Proof. "f (S) is compact." Let {U� ∶ � ∈ A} be an open cover of f (S). Then {f −1(U� )} is an open
cover of set S. Since S is compact, there exists a �nite subcover {Ui ∶ i = 1...N}.

Claim: {Ui ∶ i = 1...N} is a cover of f (S).
f (x) ∈ f (S).f −1(Ui) such that x ∈ f −1(Ui). Then f (x) ∈ Ui . Hence Ui is a �nite open cover of f (S).
Hence f (S) is compact.

Theorem 2.4. If S is a compact subset of ℝn and if f is continuous on S,
then f (x) has its max, min in S.

Theorem 2.5 (Intermediate Value Theorem). Let f ∶ [a, b] → ℝ and continuous
1. f (a)f (b) < 0 ⇒∃ c ∈ (a, b) such that f (c) = 0
2. If f0 is between f (a) and f (b), then ∃c ∈ (a, b) such that f (c) = f0

Proof.
1. [a, b] is connected. Hence f ([a, b]) is connected.
Since f ([a, b]) is an interval including 0, ∃c ∈ (a, b) such that f (x) = 0
2. De�ne g([a, b]) → ℝ such that g(x) = f (x) − f0.
Then g is continuous, g(a)g(b) < 0.
By 1, ∃c such that g(c) = 0, f (c) = f0

Theorem 2.6 (The Generalized Intermediate Value Theorem). Compact, connected set has a
intermediate value.

Theorem 2.7. f is continuous at x0, g is continuous at f (x0) then g(f ) is also continuous at x0

Proof. Let " > 0 be given. Then |g(f (x)) − g(f (x0))| < " with |f (x) − f (x0)| < � whenever
|x − x0| < � . And it is continuous.

Limiting at ∞

De�nition 2.1. lim||x||→∞ f (x) ⇔∀ " > 0 ∃M such that |f (x) − L| < " whenever ||x || > M

3 Algebra of Continuous Function
C(S) is the set of all functions continuous in S.

Theorem 3.1. S ⊂ ℝn, f , f1, f2 ∈ C(S)
f1 + f2, af , f1f2 ∈ C(S)
1/f , f1/f2 ∈ C(S) when f , f2 ≠ 0

Theorem 3.2. f is continuous at x0 ∈ S ⇒ f is locally bounded at x0.

C∞(S) is the set of all functions bounded and continuous in S . If f ∈ C∞(S) ⇒ ||f ||∞ = sup |f |
If S is compact, C∞(S) = C(S)
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4 Uniform Continuity
De�nition 4.1. f ∶ S ⊂ ℝn → ℝ is called uniformly continuous if ∀" > 0 ∃� > 0 such that
f (x) − f (y) < " whenever |x − y | < �

Theorem 4.1.

Theorem 4.2. f ∶ S ⊂ ℝn → ℝ continuous and S is compact. Then f is uniformly continuous

Proof. Let " > 0 be given. The goal is to �nd � > 0 such that |f (x)−f (y)| < " whenever |x−y | < �
Then since f is continuous at x ∃�(x) such that |f (x) − f (y)| < "/2 for all y ∈ N (x, �(x)|
Then {N (x, �(x)/2) ∶ x ∈ S} open cover of S.
Since S is compact, we have a �nite subcover, {N (x, �i/2) ∶ i = 1...N}

Take �0 = min(�i/2)
Let |x − y | < �0. Then ∃xi such that x ∈ N (xi , �i/2)
|f (x) − f (y) ≤ |f (x) − f (xi)| + |f (xi) − f (y)| ≤ "/2 + "/2 = " whenever |x − y | < �0

5 Uniform Norm, Uniform Convergence
De�nition 5.1. f ∈ C∞(S), ||f ||∞ = sup |f (x)| in S.(supremum norm)

Theorem 5.1. Supremum norm(|| ⋅ ||∞ satis�es conditions of the norm.

De�nition 5.2. d∞(f ⋅ g) = ||f − g||∞ is the uniform metric.

Theorem 5.2. d∞(f ⋅ g) is a metric.

De�nition 5.3. Neighborhood N (f ; ") = {g ∈ C∞(S) ∶ ||g − f ||∞ < "}

De�nition 5.4. Uniform convergence
1. Let F ⊂ C∞(S), f0 ∈ C∞(S) is a uniform limit of F if ∀" > 0, ∃f ∈ F such that f ∈ N (f0, ")
2. {fk ∈ C∞(S)} converges uniform to f0 ∈ C∞(S) ⇔ ∀" > 0 ∃k0 such that ||fk − f0|| < "
whenever k > k0
3. {fk(x)} ⊂ C∞(S) is called uniformly Cauchy if and only if ∀" > 0 ∃k0 such that ||fk − fm||∞ < "
whenever k,m > k0

[Pointwise convergence]
fk → f0 pointwise as k → ∞ if and only if for any x ∈ S, fk(x) converges to f0(x) as k → ∞

Theorem 5.3. {fk} ⊂ C∞(S), fk → f0 uniformly, then f0 ∈ C∞(S) (C∞(S) is complete with
uniform convergence)

Proof. Let x0 ∈ S. We will show f0 is continuous at x0.
Let " > 0. Then ∃fk ∈ N (f0; "/3)
Since fk is continuous, ∃� > 0 such that |fk(x) − fk(x0)| < "/3 whenever |x − x0| < �
|f0(x) − f0(x0)| ≤ |f0(x) − fk(x)| + |fk(x) − fk(x0)| + |fk(x0) − f0(x0)| ≤ 3"/3
Hence f0 is continuous.
f0 ∈ N (fk , ") ||f0||∞ ≤ ||fk ||∞ + "
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Theorem 5.4. {fk} ⊂ C∞(S) is Cauchy sequence then there exists M > 0 such that ||fk ||∞ < M ∀k

Proof. Let {fk} be a Cauchy sequence. Then ∀" > 0,∃ k0 such that ||fk − fm||∞ < " whenever
k,m > k0
Take " = 1, and M = max(||fk0 ||∞ + 1, ||fi ||∞)
Then for k ≤ k0, theorem 4 holds.

Let k > k0. Then ||fk ||∞ = ||fk − fk0 + fk0 ||∞ ≤ ||fk − fk0 ||∞ + ||fk0 ||∞ = " + ||fk0 ||∞ ≤ M

Theorem 5.5. C∞(S) is Cauchy complete.

Proof. {fk(x)} is a Cauchy sequence for any x ∈ S. Then fk(x) → f0(x) pointwise.
Claim: fk ∈ N (f0, ") ∀k > k0
Suppose not. Then ∃k > k0, x0 ∈ S such that |fk(x0) − f0(x0)| > ".
Since fm(x0) → f0(x0), ∃m > k0 such that |fm(x0) − fk(x0)| > "
Therefore, ||fk − fm||∞ > ", which is contradiction.

Since the convergence is uniform, by theorem 3, f0 is continuous. Furthermore, f0 is bounded
by theorem4. Hence f0 ∈ C∞(S)

Theorem 5.6 (Corollary 6). C(S) is complete under uniform norm if S is compact.

Proof. If S is compact, C(S) = C∞(S) as it is bounded.

De�nition 5.5. S ⊂ ℝn, F ⊂ C∞(S)
F is dense in C∞(S) in uniform norm if N (f0, ") ∩ F ≠ ∅ ∀f0 ∈ C∞(S)

Theorem 5.7 (Weierstrass Approximation Theorem). If S ⊂ ℝn is compact, then collection of
polynomials P (S) is dense in C∞(S) in uniform norm

Bernstein’s polynomial Bk(x) = ∑k
0 f (j/k)(

k
j)x

j(1 − x)k−j

6 Vector valued functions
De�nition 6.1. f ∶ S ⊂ ℝn → ℝm, f (x) = (f 1(x), ..., f m(x))
f is continuous if f i are all continuous.
f (x) → V as x → c (c ∈ S) ⇔∀ " > 0 ∃� > 0 such that ||f (x) − V || < " whenever |x − c| < �
f is continuous at c ∈ S if f (c) = V

N (f , ") = {g ∈ C∞(S) ∶ ||f − g||∞ < "
||f ||∞ = supx∈S ||f (x)||
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