MAS241 CH3: Continuity

MaxLevSnail

September 18, 2022

1 Limit and Continuity

Definition 1.1. $f : S \subset \mathbb{R} \to \mathbb{R}, c \in \overline{S}$

$$
\lim_{x \to c} f(x) = L \Leftrightarrow^{\forall} \varepsilon > 0,^{\exists} \delta > 0 \text{ such that } |f(x) - L| < \varepsilon \text{ whenever } 0 < |x - c| < \delta \text{ and } x \in S.
$$

Definition 1.2. $f : S \subset \mathbb{R}^m \to \mathbb{R}^n$, $c \in \overline{S}$

 $\lim_{x\to c} f(x) = L \Longleftrightarrow^{\forall} \varepsilon > 0,^{\exists} \delta > 0$ such that $f(S \cap N'(c, \delta)) \subset (L - \varepsilon, L + \varepsilon)$ for $n = 1$.

Definition 1.3. $f : S \subset \mathbb{R}^m \to \mathbb{R}^n$, $c \in S$

f is called continuous at c if $\lim_{x\to c} f(x) = L = f(c)$.

Theorem 1.1. $f : S \subset \mathbb{R}^n \to \mathbb{R}, c \in \overline{S}$

 $\lim_{x\to c} f(x) = L \implies f$ is locally bounded at $x = c$. *Locally bounded means* \forall *nbd N(c)* f *is bounded.*

Proof. Let $\varepsilon = 1$ then $\frac{3}{5} > 0$ such that $|f(x) - L| < \varepsilon$ whenever $0 < |x - c| < \delta$

 $\Rightarrow |f(x)| < |L| + 1$ whenever $x \in N'(c, \delta)$ $|f(x)| < |L| + 1 + |f(c)|$ whenever $x \in N(c, \delta)$

Theorem 1.2. $f : S \subset \mathbb{R}^n \to \mathbb{R}, c \in \overline{S}$

 $\lim_{x\to c} f(x) = L > 0 \implies f$ is locally bounded away from 0.

Proof. Since $f(x) \to L > 0$ as $x \to c$, there exists $\delta > 0$ such that $|f(x) - L| < L/2$ whenever $x \in N'(c, \delta)$.

Therefore, $f(x) > L/2$

Theorem 1.3. *Suppose that* f_1 *and* f_2 *are two real valued functions with common domain S in* \mathbb{R}^n , that c is a point of \overline{S} , and that $\lim_{x\to c} f_1(x) = L_1$ and $\lim_{x\to c} f_2(x) = L_2$ exists. Then

i) $\lim_{x\to c} [f_1(x) + f_2(x)] = L_1 + L_2$.

- ii) For any constant a in R, $\lim_{x\to c} af_1(x) = aL_1$.
- iii) $\lim_{x\to c} f_1(x) f_2(x) = L_1 L_2$.
- iv) $\lim_{x\to c} 1/f_2(x) = 1/L_2$, provided that $L_2 \neq 0$.
- v) $\lim_{x\to c} f_1(x)/f_2(x) = L_1/L_2$ provided that $L_2 \neq 0$.

 \Box

 \Box

Theorem 1.4 (Squeeze play theorem). $f(x) \leq g(x) \leq h(x)$, $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$, *Then* $\lim_{x\to c} g(x) = L$ **Theorem 1.5.** $f(x) \leq g(x)$ in $N'(c, \delta) \cap S$ $\lim_{x\to c} f(x) = L_1$, $\lim_{x\to c} g(x) = L_2 \implies L_1 \leq L_2$

Characterizations of Discontinuities in ℝ

2 Topological description of continuity

Theorem 2.1. $f : S \subset \mathbb{R}^n \to \mathbb{R}^m$, $T = f(S)$ *We start with* $m = 1$ *case.* f is continuous if and only if $f^{-1}(U)$ is relatively open in S for all U relatively open in T

Proof. (\Rightarrow)

Let $\mathbf{x}_0 \in f^{-1}(U)$. Then $f(\mathbf{x}_0) \in U$.

Then ${}^3N(f(x_0), \varepsilon) \subset U$. Since f is continuous, ${}^3N(x_0, \delta) \cap S$ such that $f(N(x, \delta) \cap S) \subset N(f(x_0), \varepsilon)$ $N(\mathbf{x}, \delta) \cap S \subset f^{-1}(U)$ Therefore, all points in S are interior point, $f^{-1}(U)$ is open in S.

(←) Let $\varepsilon > 0$ be given, Let $\mathbf{x}_0 \in S$. $f^{-1}(N(f(\mathbf{x}), \varepsilon))$ is open in S. Hence ${}^3N(\mathbf{x}_0, \delta) \subset f^{-1}(N(f(\mathbf{x}_0), \varepsilon))$ Hence f is continuous at $\mathbf{x}_0 \in S$.

 \Box

Theorem 2.2. *If S* is a connected subset of ℝⁿ and iff is continuous on *S*, *then* $T = f(S)$ *is also connected.*

Proof. Suppose $f(S)$ is disconnected. Then [∃]V, U open sets such that $V \cap U = \emptyset$, $f(S) \subset U \cup V$. Then $f^{-1}(V)$, $f^{-1}(U)$ are open. $f^{-1}(V) \cap f^{-1}(U) = \emptyset$ $S \subset f^{-1}(U) \cup f^{-1}(V), S \cap f^{-1}(V) \neq \emptyset$, $S \cap f^{-1}(U) \neq \emptyset$. \Box

Theorem 2.3. If S is a compact subset of Rⁿ and if f is continuous on S, *then* $T = f(S)$ *is also compact.*

Proof. " $f(S)$ is compact." Let $\{U_{\alpha} : \alpha \in A\}$ be an open cover of $f(S)$. Then $\{f^{-1}(U_{\alpha})\}$ is an open cover of set S. Since S is compact, there exists a finite subcover $\{U_i : i = 1...N\}$.

Claim: $\{U_i : i = 1...N\}$ is a cover of $f(S)$. $f(\mathbf{x}) \in f(S) \cdot f^{-1}(U_i)$ such that $\mathbf{x} \in f^{-1}(U_i)$. Then $f(\mathbf{x}) \in U_i$. Hence U_i is a finite open cover of $f(S)$. Hence $f(S)$ is compact. \Box

Theorem 2.4. If S is a compact subset of Rⁿ and if f is continuous on S, *then* $f(x)$ *has its max, min in S.*

Theorem 2.5 (Intermediate Value Theorem). Let $f : [a, b] \rightarrow \mathbb{R}$ and continuous 1. $f(a)f(b) < 0 \Rightarrow^{\exists} c \in (a, b)$ such that $f(c) = 0$ 2. If f_0 is between $f(a)$ and $f(b)$, then ^{$\exists c \in (a, b)$ such that $f(c) = f_0$}

Proof.

1. [a, b] is connected. Hence $f([a, b])$ is connected. Since $f([a, b])$ is an interval including $0, \exists c \in (a, b)$ such that $f(x) = 0$ 2. Define $g([a, b]) \rightarrow \mathbb{R}$ such that $g(x) = f(x) - f_0$. Then g is continuous, $g(a)g(b) < 0$. By 1, [∃]c such that $g(c) = 0, f(c) = f_0$

Theorem 2.6 (The Generalized Intermediate Value Theorem)**.** *Compact, connected set has a intermediate value.*

Theorem 2.7. f *is continuous at* \mathbf{x}_0 , g *is continuous at* $f(\mathbf{x}_0)$ *then* $g(f)$ *is also continuous at* \mathbf{x}_0

Proof. Let $\varepsilon > 0$ be given. Then $|g(f(\mathbf{x})) - g(f(\mathbf{x}_0))| < \varepsilon$ with $|f(\mathbf{x}) - f(\mathbf{x}_0)| < \delta$ whenever $|\mathbf{x} - \mathbf{x}_0| < \delta$. And it is continuous. \Box

Limiting at ∞

Definition 2.1. $\lim_{\|x\| \to \infty} f(x) \Longleftrightarrow^{\forall} \varepsilon > 0$ ³M such that $|f(x) - L| < \varepsilon$ whenever $\|x\| > M$

3 Algebra of Continuous Function

 $C(S)$ is the set of all functions continuous in S.

Theorem 3.1. $S \subset \mathbb{R}^n$, $f_1, f_2 \in C(S)$ $f_1 + f_2$, $af, f_1f_2 \in C(S)$ $1/f, f_1/f_2 \in C(S)$ *when* $f, f_2 \neq 0$

Theorem 3.2. f *is continuous at* $x_0 \in S \implies f$ *is locally bounded at* x_0 *.*

 $C_{\infty}(S)$ is the set of all functions bounded and continuous in S . If $f \in C_{\infty}(S) \implies ||f||_{\infty} = \sup |f|$ If S is compact, $C_{\infty}(S) = C(S)$

 \Box

4 Uniform Continuity

Definition 4.1. $f : S \subset \mathbb{R}^n \to \mathbb{R}$ is called uniformly continuous if $\forall \varepsilon > 0 \exists \delta > 0$ such that $f(x) - f(y) < \varepsilon$ whenever $|x - y| < \delta$

Theorem 4.1.

Theorem 4.2. $f : S \subset \mathbb{R}^n \to \mathbb{R}$ *continuous and* S is compact. Then f is uniformly continuous

Proof. Let $\varepsilon > 0$ be given. The goal is to find $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon$ whenever $|x - y| < \delta$ Then since f is continuous at $x^3\delta(x)$ such that $|f(x) - f(y)| < \varepsilon/2$ for all $y \in N(x, \delta(x))$ Then $\{N(x, \delta(x)/2) : x \in S\}$ open cover of S. Since *S* is compact, we have a finite subcover, $\{N(x, \delta_i/2) : i = 1...N\}$

Take $\delta_0 = min(\delta_i/2)$ Let $|x - y| < \delta_0$. Then ${}^{\exists}x_i$ such that $x \in N(x_i, \delta_i/2)$ \Box $|f(x) - f(y)| \le |f(x) - f(x_i)| + |f(x_i) - f(y)| \le \varepsilon/2 + \varepsilon/2 = \varepsilon$ whenever $|x - y| < \delta_0$

5 Uniform Norm, Uniform Convergence

Definition 5.1. $f \in C_{\infty}(S)$, $||f||_{\infty} = \sup |f(x)|$ in S.(supremum norm)

Theorem 5.1. *Supremum norm*($\|\cdot\|_{\infty}$ *satisfies conditions of the norm.*

Definition 5.2. $d_{\infty}(f \cdot g) = ||f - g||_{\infty}$ is the uniform metric.

Theorem 5.2. $d_{\infty}(f \cdot g)$ *is a metric.*

Definition 5.3. Neighborhood $N(f; \varepsilon) = \{ g \in C_{\infty}(S) : ||g - f||_{\infty} < \varepsilon \}$

Definition 5.4. Uniform convergence

1. Let $F \subset C_\infty(S)$, $f_0 \in C_\infty(S)$ is a uniform limit of F if $\forall \varepsilon > 0$, $\exists f \in F$ such that $f \in N(f_0, \varepsilon)$ 2. { $f_k \in C_\infty(S)$ } converges uniform to $f_0 \in C_\infty(S)$ ⇔ $\forall \varepsilon > 0$ $\exists k_0$ such that $||f_k - f_0|| < \varepsilon$ whenever $k > k_0$ 3. $\{f_k(x)\} \subset C_\infty(S)$ is called uniformly Cauchy if and only if $\forall \varepsilon > 0$ $\exists k_0$ such that $||f_k - f_m||_\infty < \varepsilon$

whenever $k, m > k_0$ [Pointwise convergence]

 $f_k \to f_0$ pointwise as $k \to \infty$ if and only if for any $x \in S$, $f_k(x)$ converges to $f_0(x)$ as $k \to \infty$

Theorem 5.3. $\{f_k\} \subset C_\infty(S), f_k \to f_0$ uniformly, then $f_0 \in C_\infty(S)$ *(* $C_\infty(S)$) is complete with *uniform convergence)*

Proof. Let $x_0 \in S$. We will show f_0 is continuous at x_0 . Let $\varepsilon > 0$. Then ${}^{\exists}f_k \in N(f_0; \varepsilon/3)$ Since f_k is continuous, $\frac{3}{5}$ > 0 such that $|f_k(x) - f_k(x_0)| < \varepsilon/3$ whenever $|x - x_0| < \delta$ $|f_0(x) - f_0(x_0)| \le |f_0(x) - f_k(x)| + |f_k(x) - f_k(x_0)| + |f_k(x_0) - f_0(x_0)| \le 3\varepsilon/3$ Hence f_0 is continuous. $f_0 \in N(f_k, \varepsilon)$ $||f_0||_{\infty} \le ||f_k||_{\infty} + \varepsilon$

 \Box

Theorem 5.4. $\{f_k\} \subset C_\infty(S)$ is Cauchy sequence then there exists $M > 0$ such that $||f_k||_\infty \leq M \times k$

Proof. Let $\{f_k\}$ be a Cauchy sequence. Then $\forall \varepsilon > 0$,³ k_0 such that $||f_k - f_m||_{\infty} < \varepsilon$ whenever $k, m > k_0$ Take $\varepsilon = 1$, and $M = max(||f_{k_0}||_{\infty} + 1, ||f_i||_{\infty})$ Then for $k \leq k_0$, theorem 4 holds.

 \Box

 \Box

Let $k > k_0$. Then $||f_k||_{\infty} = ||f_k - f_{k_0} + f_{k_0}||_{\infty} \le ||f_k - f_{k_0}||_{\infty} + ||f_{k_0}||_{\infty} = \varepsilon + ||f_{k_0}||_{\infty} \le M$

Theorem 5.5. $C_{\infty}(S)$ *is Cauchy complete.*

Proof. $\{f_k(x)\}\$ is a Cauchy sequence for any $x \in S$. Then $f_k(x) \to f_0(x)$ pointwise. Claim: $f_k \in N(f_0, \varepsilon)$ $\forall k > k_0$ Suppose not. Then [∃] $k > k_0$, $x_0 \in S$ such that $|f_k(x_0) - f_0(x_0)| > \varepsilon$. Since $f_m(x_0) \to f_0(x_0)$, $\exists m > k_0$ such that $|f_m(x_0) - f_k(x_0)| > \varepsilon$ Therefore, $||f_k - f_m||_{\infty} > \varepsilon$, which is contradiction.

Since the convergence is uniform, by theorem 3, f_0 is continuous. Furthermore, f_0 is bounded by theorem4. Hence $f_0 \in C_{\infty}(S)$ \Box

Theorem 5.6 (Corollary 6). *C(S)* is complete under uniform norm if *S* is compact.

Proof. If S is compact, $C(S) = C_{\infty}(S)$ as it is bounded.

Definition 5.5. $S \subset \mathbb{R}^n, F \subset C_{\infty}(S)$ *F* is dense in $C_{\infty}(S)$ in uniform norm if $N(f_0, \varepsilon) \cap F \neq \emptyset$ $\forall f_0 \in C_{\infty}(S)$

Theorem 5.7 (Weierstrass Approximation Theorem). *If* $S \subset \mathbb{R}^n$ is compact, then collection of *polynomials* $P(S)$ *is dense in* $C_{∞}(S)$ *in uniform norm*

Bernstein's polynomial $B_k(x)$ = \sum_0^k $\frac{k}{0}f(j/k)\binom{k}{j}x^{j}(1-x)^{k-j}$

6 Vector valued functions

Definition 6.1. $f: S \subset \mathbb{R}^n \to \mathbb{R}^m$, $f(x) = (f^1(x), ..., f^m(x))$ f is continuous if f^i are all continuous. $f(x) \to V$ as $x \to c$ $(c \in \overline{S}) \Leftrightarrow^{\forall} \varepsilon > 0 \xrightarrow{3} 0$ such that $||f(x) - V|| < \varepsilon$ whenever $|x - c| < \delta$ f is continuous at $c \in S$ if $f(c) = V$

 $N(f, \varepsilon) = \{ g \in C_{\infty}(S) : ||f - g||_{\infty} < \varepsilon$ $||f||_{\infty} = \sup_{x \in S} ||f(x)||$