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1 Euclidean space

For numbers in R, xk ∈ R,xk → x0 as k →∞
⇔ ∀ε > 0∃k0 such that ∀k > k0, |xk − x0| < ε
For Euclidean space Rn, X = (x1, ...xn) ∈ Rn
Xk → X0 as k →∞
⇔ ∀ε > 0∃k0 such that ∀k > k0, ||xk − x0|| < ε

Definition 1.1. Inner product is defined 〈x,y〉 = x · y =
∑n
i=1 x

iyi.

Theorem 1.1. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉
〈x,y〉 = 〈y,x〉
〈ax, by〉 = ab〈x,y〉

Definition 1.2. ||X|| =
√
〈x,x〉 ≥ 0

(Euclidean norm)

Theorem 1.2 (The Cauchy-Schwarz Inequality). |〈x,y〉| ≤ ||x|| · ||y||

Proof. z = x + ty, t ∈ R.
0 ≤ ||z||2 = 〈z, z〉 = 〈x + ty,x + ty〉 = ||x||2 + 2t〈x,y〉+ t2||y||2
⇒ 〈x,y〉2 − ||y||2||x||2 ≤ 0

And we call 〈x,y〉
||x||·||y|| Cosine.

Theorem 1.3. For vectors x and y in Rn, the Euclidean norm has the following properties:
i) Positive Definiteness: ||x|| ≥ 0, ||x|| = 0 when only x = 0.
ii) Absolute Homogeneity: ||cx|| = |c| · ||x||
iii) Subadditivity: ||x + y|| ≤ ||x||+ ||y||

Definition 1.3. If function f : Rn → Rn satisfies i,ii,iii,
Then f is also called a norm.

Definition 1.4. Function d : Rn × Rn → R is called a metric if
i) d(x,y) ≥ 0 and d(x,y) = 0 if and only if x = y.(Positivitiy)
ii)d(x,y) = d(y,x) (Symmetry)
iii)d(x,y) ≤ d(x, z) + d(z,y) ∀z (Triangle inequality)

Definition 1.5. d(x,y) = ||x− y||

Theorem 1.4. Euclidean metric is really a metric.

Definition 1.6. x,y are orthogonal to each other if cos θ = 0, 〈x,y〉 = 0

Definition 1.7. N(x, r) = {y ∈ Rn : ||x− y|| < r}
Deleted neighborhood is defined the minus of {x}

Definition 1.8. ∅ 6= S ⊂ Rn, x0 ∈ Rn is called a limit point of S if and only if ∀ε > 0 ∃x ∈ S such
that x ∈ S ∩N ′(x0, ε)
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Definition 1.9. S ⊂ Rn is bounded if ∃M > 0 such that ||x|| < M ∀x ∈ S

Sequences in Rn

Definition 1.10. xk ∈ Rn, c ∈ Rn,
c is a cluster point of {xk} if and only if ∀ε > 0, ∀k0 > 0∃k such that ||xk − c|| < ε whenever k > k0

Definition 1.11. {xk} converges to x0 ∈ Rn if ∀ε > 0∃k0 such that ||xk − x0|| < ε whenever k > k0
and x0 is called the limit point.

Definition 1.12. {xk} is called Cauchy if and only if ∀ε > 0∃k0 such that ||xk − xm|| < ε whenever
k,m > k0

Theorem 1.5.

Theorem 1.6.

Theorem 1.7. Let xk = (x1, ..., xn) ∈ Rn, xk converges if and only if xk converges.

Theorem 1.8. Rn is Cauchy Complete

Theorem 1.9 (Generalized Bolzano-Weierstrass Theorem). Every bounded infinite set in Rn has a limit
point in Rn
Proof. Split set to half and half again while having infinite elements.
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2 Open and Closed Set

Definition 2.1. Let S be any subset of Rn and let x be any point in Rn.

(i) x is an interior point of S if ∃r > 0 such that N(x; r) ⊆ S

(ii) x is a boundary point of S if ∀r > 0N(x; r) contains both S and SC

(iii) S is an open set if ∀x ∈ S is an interior point.(No boundary)

(iv) S is called a closed set if S contains every bdry points.

Theorem 2.1.
i) Vi is an open sets ⇒

⋃
i Vi is open

ii) Vi is an open sets ⇒
⋂n
i Vi is open (n is finite)

Theorem 2.2. Let set C ⊂ Rn.
C is closed ⇔ Cc is open.

Theorem 2.3.
i) Ci is a closed sets ⇒

⋂
i Vi is closed

ii) Ci is a closed sets ⇒
⋃n
i Vi is closed (n is finite)

Theorem 2.4. Let set C ⊂ Rn.
C is closed ⇔ C contains all of its limit points.

Definition 2.2. Let S be any subset of Rn.

(i) The interior of S, denoted S0, is the set of all interior points of S.

(ii) The boundary of S, denoted bd(S), is the set of all boundary points of S.

(iii) The derived of S, denoted S′, is the set of all limit points of S.

(iv) The closure of S, denoted S̄, is the union of S and S′.

(v) The complement of S, denoted Sc, is the set of all points in Rn not in S.

Theorem 2.5. S ⊂ Rn, S0 is the union of all open sets contained in S.
S0 =

⋃
V ∈A V,A = {V |V ⊂ S, open}

Proof. We will prove it by using A = B,A ⊂ B,B ⊂ A

1. (S0 ⊂ ∪V ) Let x ∈ S0, we can make N(x; r) < ε(which is an open subset)

2. (∪V ⊂ S0) Let x ∈ ∪V , Then ∃v ∈ A such that x ∈ V
Since V is an open set ∃r > 0 such that N(x; r) ⊂ S0

Hence x is an interior point, x ∈ S0

Theorem 2.6 (Corollary 6). S0 is an open set.

Theorem 2.7. S ⊂ Rn, S̄ =
⋂
V ∈A V,A = {V |V ⊃ S, closed}

Theorem 2.8 (Corollary 8). S̄ is closed.

Definition 2.3. ∅ 6= S ⊂ Rn,x ∈ Rn
d(S) = diam(S) = sup{||x− y||/x,y ∈ S}

Definition 2.4. dist(x, S) = d(x, S) = inf{||x− y||/y ∈ S}

Theorem 2.9. Let S be any set in Rn

(i) (S0)0 = S0

(ii) ¯( ¯ )S = S̄

(iii) S0 ∩ bd(S) = ∅

(iv) S0 ∪ bd(S) = S̄

(v) S̄ ∩ S̄c = bd(S)
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Theorem 2.10. Let S be a nonempty set in Rn, x ∈ Rn

(i) d(x, S) = 0⇔ x ∈ S̄

(ii) S is closed⇔∃ y ∈ S such that d(x, S) = ||x− y||

(iii) S is closed⇔ dist(x, S) > 0∀x /∈ S

(iv) S is open and x /∈ S ⇔ dist(x, S) 6= ||x− y||∀y ∈ S

3 Completeness

Definition 3.1. A sequence {Sk} of sets in Rn such that Sk ⊇ Sk+1 for each k in N is said to be nested

Theorem 3.1 (Cantor’s Nested Interval Theorem). If {Ik = [ak, bk]} is nested and sup ak = α, inf bk = β⋂
Ik = [α, β]

Proof. [α, β] ⊂ [ak, bk]∀k ⇒ [α, β] ⊂
⋂
Ik⋂

Ik ⊂ [α, β] : Let x /∈ [α, β].
Then x < αorx > β. Suppose x < α, then ∃ak such that ak < x < α⇒ x /∈ Ik.
β part is similar.

Theorem 3.2 (Corollary 2). If limk→inf bk − ak = 0, then
⋂
Ik is a single point.

Theorem 3.3 (Cantor’s Criterion). If {Ck} is a nested sequence of closed, bounded, nonempty subsets
of Rn, then

∞⋂
k=1

Ck 6= ∅

Furthermore, if limk→∞ d(Ck) = 0, where d(Ck) is the diameter of Ck,
then

⋂∞
k=1 Ck = {x0} for some x0 in Rn

Proof. Since Ck 6= ∅,∃ xk ∈ Ck ∀k
{xk} is bounded sequence.
Let C is a cluster point of {xk}
Claim: C ∈ C∀kk
Since Ck is closed and xj ∈ ck ∀j ≤ k, C ∈ Ck
Therefore, C ∈

⋂
Ck

Theorem 3.4. Suppose that Cantor’s criterion and Archimedes’ principle hold in R. Suppose also that
S is a nonempty set in R that is bounded above. Then supS exists in R.

Theorem 3.5. The followings are equivalent

1. Axiom 1.1.1

2. Every bounded monotone sequence has a limit.

3. R has a Bolzano-Weierstrass property.

4. R is Cauchy-complete.

5. Rn is Cauchy-complete.

6. Rn has a Bolzano-Weierstrass property.

7. Cantor criterion is valid in Rn

8. Cantor criterion is valid in R
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4 Relative Topology and Connectedness

Topology: talking about open sets and closed sets.

Definition 4.1. S ⊂ Rn, S ⊂ X is relatively open(closed) in X if there exists an open(closed) set
U ⊂ Rn such that S = X ∩ U

Definition 4.2. ∅ 6= X ⊂ Rn

1. N(x0; r) ∩X is (relative) neighborhood in X

2. {xk ∈ X} converges in X if ∃x0 ∈ X such that xn → x0

3. S ⊂ X, S̄ ∩X is called relative closure

Theorem 4.1. ∅ 6= X ⊂ Rn, The followings are equivalent:

1. X is Cauchy-complete.

2. X has Bolzano-Weierstrass property.

3. X satisfies Cantor’s criterion.

Proof. (i)⇒(ii):
Let S ⊂ X be bounded an d has infinitely many points.

⇔ This sequence is Cauchy. (ii)⇒(iii):
Let Ck ⊂ X be closed, bounded, nested non empty.
If one of Ck has only finite number of points, then the intersection is always not empty.
Suppose all of Ck contains infinite points, we can let xk ∈ Ck, xk 6= xm, k 6= m
{xk} is bounded infinite points, then limit point should be x0 by B-W property. (iii)⇒(i):
...

Definition 4.3. X ∈ Rn is called complete if one of the three properties of theorem 1 is satisfied

Theorem 4.2. ∅ 6= X ⊂ Rn is complete if and only if X is closed.
Proof. (⇒) Let x0 be a boundary point of X. Then, we can make a Cauchy sequence that converges to
x0. ⇒ x0 ∈ X, closed
(⇐) ...

Definition 4.4. S ⊂ Rn is disconnected if
∃U, V nonempty open sets such that U ∩ V = ∅, S ∩ U 6= ∅, S ∩ V 6= ∅, S ⊂ U ∪ V

Theorem 4.3. Any interval I = (a, b) is connected.
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5 Compactness

Definition 5.1. Let ∅ 6= S ⊂ Rn.
A collection of sets C−{Uα ⊂ Rn|α ∈ A} is called a cover of S if

⋃
α∈A Uα ⊃ S. (α can be uncountable.)

If Uα are all open, then C is called an open cover.

Theorem 5.1 (Heine-Borel). Let S be any closed and bdd interval in R and let C = {Ik} be any open
cover of S consisting open intervals. There exists a finite collection {Ikp} consisting of sets in C that also
covers S.

Definition 5.2. S ⊂ Rn is called compact if every open cover has a finite number of subcollections that
covers S.

Theorem 5.2 (Lindelöf’s Theorem). Let S be any subset of Rn and let C = {Uα : α in A} be any open
cover of S. Then some countable subcollection of C also covers S.
Proof. Consider B = {N(y, q) : y ∈ Qn, q ∈ Q}
x ∈ S, Then ∃Uα such that x ∈ Uα

Claim: ∃N(y, q) ∈ B such that x ∈ N(y, q) ⊂ Uα.
Let r = dist(x, UCα ). Consider N(x, r/3). Then there eexists y ∈ Qn such that it is in N(x, r/3)
∃q ∈ Q such that r/3 < q < 2r/3.

Let A ⊂ B such that which consists of such N(y, q), it is countably many cover.
Consider a subcover of C that counts only one that include.

Theorem 5.3 (The Generalized Heine-Borel Theorem). S ⊂ Rn is closed and bounded if and only if S
is compact.
Proof. Let {Uα|α ∈ A} be an open cover. Then there exists a countable subcover by Lindelöf’s Theorem
that {Ui|i = 1...∞} be a countable cover.
Define In =

⋃n
i=1 Ui, and Dn = ICn ∩ S

Then Dk is closed, nested and bounded.
Claim:

⋂∞
k=1Dk = ∅

Suppose not: Then ∃x ∈
⋂∞

Dk, then x ∈ Dk
∀k. x ∈ ICk ∩ S ∀k, and it is contradiction since Ui is a

cover of S.
By Cantor’s Criterion, ∃Dk = ∅⇒ S ⊂ Ik, and Ui, i = 1...k is a finite open cover.

Theorem 5.4.
(i) S ⊂ Rn is unbounded, then S is not compact.
(ii) S ⊂ Rn is not closed, then S is not compact.

Proof. Let x0 be a boundary point of S and x0 6= S. Consider N(x0, 1/k)
C

= Uk.
Then

⋃∞
k=1 Uk ⊃ S is an open cover but its finite union cannot cover S.

Theorem 5.5. ∅ 6= S ⊂ Rn, The followings are equivalent:
(i) S is closed and bounded.
(ii) S is compact.
(iii) Every infinite subset of S has a limit point in S.
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