MAS241 CH2: Euclidean Space

MaxLevSnail

March 2021

1 Euclidean space

For numbers in \mathbb{R} , $x_k \in \mathbb{R}$, $x_k \to x_0$ as $k \to \infty$ $\Leftrightarrow \forall \epsilon > 0 \exists k_0$ such that $\forall k > k_0$, $|x_k - x_0| < \epsilon$ For Euclidean space \mathbb{R}^n , $\mathbf{X} = (x^1, ..., x^n) \in \mathbb{R}^n$ $\mathbf{X}_k \to \mathbf{X}_0$ as $k \to \infty$ $\Leftrightarrow \forall \epsilon > 0 \exists k_0$ such that $\forall k > k_0$, $||\mathbf{x}_k - \mathbf{x}_0|| < \epsilon$

Definition 1.1. Inner product is defined $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x^{i} y^{i}$.

Theorem 1.1. $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ $\langle a\mathbf{x}, b\mathbf{y} \rangle = ab \langle \mathbf{x}, \mathbf{y} \rangle$

Definition 1.2. $||\mathbf{X}|| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \ge 0$ (Euclidean norm)

Theorem 1.2 (The Cauchy-Schwarz Inequality). $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| \cdot ||\mathbf{y}||$

Proof. $\mathbf{z} = \mathbf{x} + t\mathbf{y}, t \in \mathbb{R}$. $0 \le ||\mathbf{z}||^2 = \langle \mathbf{z}, \mathbf{z} \rangle = \langle \mathbf{x} + t\mathbf{y}, \mathbf{x} + t\mathbf{y} \rangle = ||\mathbf{x}||^2 + 2t \langle \mathbf{x}, \mathbf{y} \rangle + t^2 ||\mathbf{y}||^2$ $\Rightarrow \langle \mathbf{x}, \mathbf{y} \rangle^2 - ||\mathbf{y}||^2 ||\mathbf{x}||^2 \le 0$ And we call $\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}|| \cdot ||\mathbf{y}||}$ Cosine.

Theorem 1.3. For vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n , the Euclidean norm has the following properties: i) Positive Definiteness: $||\mathbf{x}|| \ge 0$, $||\mathbf{x}|| = 0$ when only $\mathbf{x} = \mathbf{0}$. ii) Absolute Homogeneity: $||c\mathbf{x}|| = |c| \cdot ||\mathbf{x}||$ iii) Subadditivity: $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$

Definition 1.3. If function $f : \mathbb{R}^n \to \mathbb{R}^n$ satisfies i,ii,iii, Then f is also called a norm.

Definition 1.4. Function $d : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is called a metric if i) $d(\mathbf{x}, \mathbf{y}) \ge 0$ and $d(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$.(Positivity) ii) $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ (Symmetry) iii) $d(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y}) \ \forall \mathbf{z}$ (Triangle inequality)

Definition 1.5. d(x, y) = ||x - y||

Theorem 1.4. Euclidean metric is really a metric.

Definition 1.6. \mathbf{x}, \mathbf{y} are orthogonal to each other if $\cos \theta = 0$, $\langle \mathbf{x}, \mathbf{y} \rangle = 0$

Definition 1.7. $N(\mathbf{x}, r) = {\mathbf{y} \in \mathbb{R}^n : ||\mathbf{x} - \mathbf{y}|| < r}$ Deleted neighborhood is defined the minus of ${\mathbf{x}}$

Definition 1.8. $\emptyset \neq S \subset \mathbb{R}^n$, $\mathbf{x}_0 \in \mathbb{R}^n$ is called a limit point of S if and only if $\forall \epsilon > 0 \exists \mathbf{x} \in S$ such that $\mathbf{x} \in S \cap N'(\mathbf{x}_0, \epsilon)$

Definition 1.9. $S \subset \mathbb{R}^n$ is bounded if $\exists M > 0$ such that $||\mathbf{x}|| < M \ \forall \mathbf{x} \in S$

Sequences in \mathbb{R}^n

Definition 1.10. $\mathbf{x}_k \in \mathbb{R}^n$, $\mathbf{c} \in \mathbb{R}^n$, \mathbf{c} is a cluster point of $\{\mathbf{x}_k\}$ if and only if $\forall \epsilon > 0$, $\forall k_0 > 0 \exists k$ such that $||\mathbf{x}_k - \mathbf{c}|| < \epsilon$ whenever $k > k_0$

Definition 1.11. $\{\mathbf{x}_k\}$ converges to $\mathbf{x}_0 \in \mathbb{R}^n$ if $\forall \epsilon > 0 \exists k_0$ such that $||\mathbf{x}_k - \mathbf{x}_0|| < \epsilon$ whenever $k > k_0$ and \mathbf{x}_0 is called the limit point.

Definition 1.12. $\{\mathbf{x}_k\}$ is called Cauchy if and only if $\forall \epsilon > 0 \exists k_0$ such that $||\mathbf{x}_k - \mathbf{x}_m|| < \epsilon$ whenever $k, m > k_0$

Theorem 1.5.

Theorem 1.6.

Theorem 1.7. Let $\mathbf{x}_k = (x^1, ..., x^n) \in \mathbb{R}^n$, \mathbf{x}_k converges if and only if x^k converges.

Theorem 1.8. \mathbb{R}^n is Cauchy Complete

Theorem 1.9 (Generalized Bolzano-Weierstrass Theorem). Every bounded infinite set in \mathbb{R}^n has a limit point in \mathbb{R}^n

Proof. Split set to half and half again while having infinite elements.

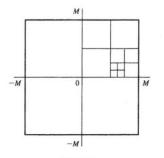


Figure 2.6

2 Open and Closed Set

Definition 2.1. Let S be any subset of \mathbb{R}^n and let **x** be any point in \mathbb{R}^n .

- (i) **x** is an interior point of S if $\exists r > 0$ such that $N(\mathbf{x}; r) \subseteq S$
- (ii) **x** is a boundary point of S if $\forall r > 0N(\mathbf{x}; r)$ contains both S and S^C
- (iii) S is an open set if $\forall \mathbf{x} \in S$ is an interior point.(No boundary)
- (iv) S is called a closed set if S contains every bdry points.

Theorem 2.1.

i) V_i is an open sets $\Rightarrow \bigcup_i V_i$ is open *ii)* V_i is an open sets $\Rightarrow \bigcap_i^n V_i$ is open (*n* is finite)

Theorem 2.2. Let set $C \subset \mathbb{R}^n$. C is closed $\Leftrightarrow C^c$ is open.

Theorem 2.3.

i) C_i is a closed sets $\Rightarrow \bigcap_i V_i$ is closed ii) C_i is a closed sets $\Rightarrow \bigcup_i^n V_i$ is closed (n is finite)

Theorem 2.4. Let set $C \subset \mathbb{R}^n$. C is closed $\Leftrightarrow C$ contains all of its limit points.

Definition 2.2. Let S be any subset of \mathbb{R}^n .

- (i) The *interior* of S, denoted S^0 , is the set of all interior points of S.
- (ii) The boundary of S, denoted bd(S), is the set of all boundary points of S.
- (iii) The derived of S, denoted S', is the set of all limit points of S.
- (iv) The closure of S, denoted \overline{S} , is the union of S and S'.
- (v) The complement of S, denoted S^c , is the set of all points in \mathbb{R}^n not in S.

Theorem 2.5. $S \subset \mathbb{R}^n$, S^0 is the union of all open sets contained in S. $S^0 = \bigcup_{V \in A} V, A = \{V | V \subset S, open\}$ *Proof.* We will prove it by using $A = B, A \subset B, B \subset A$

- 1. $(S^0 \subset \cup V)$ Let $\mathbf{x} \in S^0$, we can make $N(\mathbf{x}; r) < \epsilon$ (which is an open subset)
- 2. $(\cup V \subset S^0)$ Let $\mathbf{x} \in \cup V$, Then $\exists v \in A$ such that $\mathbf{x} \in V$ Since V is an open set $\exists r > 0$ such that $N(\mathbf{x}; r) \subset S^0$ Hence \mathbf{x} is an interior point, $\mathbf{x} \in S^0$

Theorem 2.6 (Corollary 6). S^0 is an open set.

Theorem 2.7. $S \subset \mathbb{R}^n, \overline{S} = \bigcap_{V \in A} V, A = \{V | V \supset S, closed\}$

Theorem 2.8 (Corollary 8). \overline{S} is closed.

Definition 2.3. $\emptyset \neq S \subset \mathbb{R}^n, \mathbf{x} \in \mathbb{R}^n$ $d(S) = diam(S) = \sup\{||\mathbf{x} - \mathbf{y}|| / \mathbf{x}, \mathbf{y} \in S\}$

Definition 2.4. $dist(\mathbf{x}, S) = d(\mathbf{x}, S) = \inf\{||\mathbf{x} - \mathbf{y}||/\mathbf{y} \in S\}$

Theorem 2.9. Let S be any set in \mathbb{R}^n

- (i) $(S^0)^0 = S^0$
- (*ii*) $(\bar{S}) = \bar{S}$
- $(iii) \ S^0 \cap bd(S) = \varnothing$
- (iv) $S^0 \cup bd(S) = \bar{S}$
- (v) $\bar{S} \cap \bar{S^c} = bd(S)$

Theorem 2.10. Let S be a nonempty set in \mathbb{R}^n , $\mathbf{x} \in \mathbb{R}^n$

- (i) $d(\mathbf{x}, S) = 0 \Leftrightarrow \mathbf{x} \in \overline{S}$
- (ii) S is closed $\Leftrightarrow^{\exists} \mathbf{y} \in S$ such that $d(\mathbf{x}, S) = ||\mathbf{x} \mathbf{y}||$
- (iii) S is closed \Leftrightarrow dist(\mathbf{x}, S) > 0^{\forall} $\mathbf{x} \notin S$
- (iv) S is open and $\mathbf{x} \notin S \Leftrightarrow dist(\mathbf{x}, S) \neq ||\mathbf{x} \mathbf{y}||^{\forall} \mathbf{y} \in S$

3 Completeness

Definition 3.1. A sequence $\{S_k\}$ of sets in \mathbb{R}^n such that $S_k \supseteq S_{k+1}$ for each k in \mathbb{N} is said to be *nested*

Theorem 3.1 (Cantor's Nested Interval Theorem). If $\{I_k = [a_k, b_k]\}$ is nested and $\sup a_k = \alpha$, $\inf b_k = \beta$ $\bigcap I_k = [\alpha, \beta]$ *Proof.* $[\alpha, \beta] \subset [a_k, b_k] \forall k \Rightarrow [\alpha, \beta] \subset \bigcap I_k$ $\bigcap I_k \subset [\alpha, \beta] : \text{Let } x \notin [\alpha, \beta].$ Then $x < \alpha or x > \beta$. Suppose $x < \alpha$, then $\exists a_k$ such that $a_k < x < \alpha \Rightarrow x \notin I_k$. β part is similar.

Theorem 3.2 (Corollary 2). If $\lim_{k \to \inf} b_k - a_k = 0$, then $\bigcap I_k$ is a single point.

Theorem 3.3 (Cantor's Criterion). If $\{C_k\}$ is a nested sequence of closed, bounded, nonempty subsets of \mathbb{R}^n , then

$$\bigcap_{k=1}^{\infty} C_k \neq \emptyset$$

Furthermore, if $\lim_{k\to\infty} d(C_k) = 0$, where $d(C_k)$ is the diameter of C_k , then $\bigcap_{k=1}^{\infty} C_k = \{\mathbf{x}_0\}$ for some \mathbf{x}_0 in \mathbb{R}^n Proof. Since $C_k \neq \emptyset, \exists \mathbf{x}_k \in C_k \ \forall k$ $\{\mathbf{x}_k\}$ is bounded sequence. Let C is a cluster point of $\{\mathbf{x}_k\}$ Claim: $C \in C_k^{\forall} k$ Since C_k is closed and $\mathbf{x}_j \in c_k \quad \forall j \leq k, C \in C_k$ Therefore, $C \in \bigcap C_k$

Theorem 3.4. Suppose that Cantor's criterion and Archimedes' principle hold in \mathbb{R} . Suppose also that S is a nonempty set in \mathbb{R} that is bounded above. Then $\sup S$ exists in \mathbb{R} .

Theorem 3.5. The followings are equivalent

- 1. Axiom 1.1.1
- 2. Every bounded monotone sequence has a limit.
- 3. \mathbb{R} has a Bolzano-Weierstrass property.
- 4. \mathbb{R} is Cauchy-complete.
- 5. \mathbb{R}^n is Cauchy-complete.
- 6. \mathbb{R}^n has a Bolzano-Weierstrass property.
- 7. Cantor criterion is valid in \mathbb{R}^n
- 8. Cantor criterion is valid in \mathbb{R}

4 Relative Topology and Connectedness

Topology: talking about open sets and closed sets.

Definition 4.1. $S \subset \mathbb{R}^n, S \subset X$ is relatively open(closed) in X if there exists an open(closed) set $U \subset \mathbb{R}^n$ such that $S = X \cap U$

Definition 4.2. $\emptyset \neq X \subset \mathbb{R}^n$

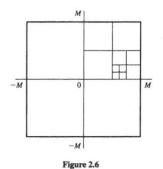
- 1. $N(\mathbf{x}_0; r) \cap X$ is (relative) neighborhood in X
- 2. { $\mathbf{x}_k \in X$ } converges in X if $\exists \mathbf{x}_0 \in X$ such that $\mathbf{x}_n \to \mathbf{x}_0$
- 3. $S \subset X, \overline{S} \cap X$ is called relative closure

Theorem 4.1. $\emptyset \neq X \subset \mathbb{R}^n$, The followings are equivalent:

- 1. X is Cauchy-complete.
- 2. X has Bolzano-Weierstrass property.
- 3. X satisfies Cantor's criterion.

Proof. (i) \Rightarrow (ii):

Let $S \subset X$ be bounded and has infinitely many points.



 \Leftrightarrow This sequence is Cauchy.

 $(ii) \Rightarrow (iii):$

Let $C_k \subset X$ be closed, bounded, nested non empty.

If one of C_k has only finite number of points, then the intersection is always not empty.

Suppose all of C_k contains infinite points, we can let $\mathbf{x}_k \in C_k$, $\mathbf{x}_k \neq \mathbf{x}_m$, $k \neq m$

 $\{\mathbf{x}_k\}$ is bounded infinite points, then limit point should be \mathbf{x}_0 by B-W property. (iii) \Rightarrow (i):

Definition 4.3. $X \in \mathbb{R}^n$ is called complete if one of the three properties of theorem 1 is satisfied

Theorem 4.2. $\emptyset \neq X \subset \mathbb{R}^n$ is complete if and only if X is closed. *Proof.* (\Rightarrow) Let \mathbf{x}_0 be a boundary point of X. Then, we can make a Cauchy sequence that converges to $\mathbf{x}_0 \Rightarrow \mathbf{x}_0 \in X$, closed (\Leftarrow) ...

Definition 4.4. $S \subset \mathbb{R}^n$ is disconnected if $\exists U, V$ nonempty open sets such that $U \cap V = \emptyset, S \cap U \neq \emptyset, S \cap V \neq \emptyset, S \subset U \cup V$

Theorem 4.3. Any interval I = (a, b) is connected.

5 Compactness

Definition 5.1. Let $\emptyset \neq S \subset \mathbb{R}^n$.

A collection of sets $C - \{U_{\alpha} \subset \mathbb{R}^n | \alpha \in A\}$ is called a *cover* of S if $\bigcup_{\alpha \in A} U_{\alpha} \supset S$. (α can be uncountable.) If U_{α} are all open, then C is called an *open cover*.

Theorem 5.1 (Heine-Borel). Let S be any closed and bdd interval in \mathbb{R} and let $\mathcal{C} = \{I_k\}$ be any open cover of S consisting open intervals. There exists a finite collection $\{I_{k_p}\}$ consisting of sets in \mathcal{C} that also covers S.

Definition 5.2. $S \subset \mathbb{R}^n$ is called *compact* if every open cover has a finite number of subcollections that covers S.

Theorem 5.2 (Lindelöf's Theorem). Let S be any subset of \mathbb{R}^n and let $\mathcal{C} = \{U_\alpha : \alpha \text{ in } A\}$ be any open cover of S. Then some countable subcollection of C also covers S. Proof. Consider $B = \{N(\mathbf{y}, q) : \mathbf{y} \in \mathbb{Q}^n, q \in \mathbb{Q}\}$

$$\mathbf{x} \in S$$
, Then $\exists U_{\alpha}$ such that $\mathbf{x} \in U_{\alpha}$

Claim: $\exists N(\mathbf{y}, q) \in B$ such that $\mathbf{x} \in N(\mathbf{y}, q) \subset U_{\alpha}$.

Let $r = dist(\mathbf{x}, U_{\alpha}^{C})$. Consider $N(\mathbf{x}, r/3)$. Then there eexists $\mathbf{y} \in \mathbb{Q}^{n}$ such that it is in $N(\mathbf{x}, r/3)$ $\exists q \in Q$ such that r/3 < q < 2r/3.

Let $A \subset B$ such that which consists of such $N(\mathbf{y}, q)$, it is countably many cover.

Consider a subcover of $\mathcal C$ that counts only one that include.

Theorem 5.3 (The Generalized Heine-Borel Theorem). $S \subset \mathbb{R}^n$ is closed and bounded if and only if S is compact.

Proof. Let $\{U_{\alpha} | \alpha \in A\}$ be an open cover. Then there exists a countable subcover by Lindelöf's Theorem that $\{U_i | i = 1...\infty\}$ be a countable cover.

Define $I_n = \bigcup_{i=1}^n U_i$, and $D_n = I_n^C \cap S$

Then D_k is closed, nested and bounded.

Claim:
$$\bigcap_{k=1}^{\infty} D_k = \emptyset$$

Suppose not: Then $\exists \mathbf{x} \in \bigcap^{\infty} D_k$, then $\mathbf{x} \in D_k \ \forall k. \ \mathbf{x} \in I_k^C \cap S \ \forall k$, and it is contradiction since U_i is a cover of S.

By Cantor's Criterion, $\exists D_k = \emptyset \Rightarrow S \subset I_k$, and $U_i, i = 1...k$ is a finite open cover.

Theorem 5.4.

(i) $S \subset \mathbb{R}^n$ is unbounded, then S is not compact.

(ii) $S \subset \mathbb{R}^n$ is not closed, then S is not compact.

Proof. Let \mathbf{x}_0 be a boundary point of S and $\mathbf{x}_0 \neq S$. Consider $\overline{N(\mathbf{x}_0, 1/k)}^C = U_k$. Then $\bigcup_{k=1}^{\infty} U_k \supset S$ is an open cover but its finite union cannot cover S.

Theorem 5.5. $\emptyset \neq S \subset \mathbb{R}^n$, The followings are equivalent:

(i) S is closed and bounded.

(ii) S is compact.

(iii) Every infinite subset of S has a limit point in S.